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LElTER TO THE EDITOR 

Closed similarity solutions for a class of stationary 
nonlinear Boltzmann-like equations 

H Cornillet, A Gervoist and V ProtopopescuS 
Service de Physique Theorique, CEN Saclay, 91 191 Gif-sur-Yvette Cedex, France 

Received 24 March 1983 

Abstract. We look for closed stationary solutions of nonlinear transport equations of the 
stochastic Boltzmann type in (1 + 1) dimensions (velocity U and position x ) .  These solu- 
tions, mainly written as the product of an exponential by a polynomial in z = x h v 2 ,  have 
the quasi similarity property. 

As a consequence of their polynomial character, they violate the positivity require- 
ment; however, we think that they are the dominant term of infinite series solutions which 
might have the desired positivity property. 

Calculations are greatly simplified by using sum rules analogous to conservation of 
mass and energy. 

Over the past several years, the nonlinear Boltzmann equation has aroused a great 
deal of renewed interest after the finding first by Bobylev (1975) and then by Krook 
and Wu (1976) of some exact non-trivial solutions (hereafter called BKW) for the 
time-dependent homogeneous version for Maxwell molecules. Many papers followed 
rapidly (Tjon and Wu 1979, Ernst 1979, Barnsley and Cornille 1980, Hauge and 
Praestgaard 1981, Cornille and Gervois 1981), all of them dealing with various 
generalisations in the homogeneous case. (For further references see the review papers 
by Cornille and Gervois (1980) and Ernst (1981).) A next step could be the study 
of a one-dimensional stationary non-homogeneous problem 

It is clear that the presence of the velocity U in both the linear and nonlinear terms 
increases the difficulty of the problem and this is confirmed by the present analysis. 

We choose the ‘scattering cross section’ (T in the form 

(T(u, w, e )  = JulPlw1%(e) 97.P a 0 (2) 
which satisfies the positivity but not the symmetry in the incoming velocities (unless 
p = q) nor the detailed balance, (unless p = q = 0; Kac’s model (1956)). It seems 
difficult to accept on physical grounds the asymmetry in the incoming velocities. 
However, for the sake of mathematical completeness and because of several 
mathematical phenomena which might be interesting either in themselves or for other 
problems, we shall include these cases too in our analysis. By the way, we remark 
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that the case p = 1, q = 0 leads to the closest formal analogy with the time-dependent 
homogeneous problem: a, + sg U a,, where sg U is the sign function u/ lu l .  

The cross section o ( u ,  w, e )  given by (2) is a stochastic one-it does not come 
from a mechanical law of scattering. In analogy with the Kac model (Kac 1956), we 
shall describe the change of the velocities in a collision by the transformation 

U ' = U  cos e - w  sin e w ' = u  s inB+w cos8 (3) 

where 8 should not be interpreted like an angle (for the motion remains always 
one-dimensional) but as a kinematical parameter. The transformation (3) does not 
preserve the momentum but locally preserves the mass and the energy, though mass 
and energy may vary throughout the vessel. We can reasonably suppose a(e)= 
(T(T - 0 )  = o(n + 8). Then, decomposing f in its even and odd parts with respect to 
u , f = f + + f - ,  we get from (1) 

(4) f-(x, U )  = -(~/l~lP)(Nq(X))-'(~o)-'axf+(x, U )  

The moment v0 = J u ( B )  de  appears only with Nq(x). It is finite if a(@) is not too 
singular and in the following, we always assume go = 1. Throughout the paper we 
assume Nq(x) f0,  so that f- is unambiguously determined from f + ;  then equation ( 5 )  
is a closed equation for f+. 

The particular role played by the BKW solutions in the homogeneous case suggests 
to look for solutions of the same type, namely 

(7) 

where two main ideas are included. 
(i) The solution has a Maxwell-like factor; this factor appears in the resolution of 

Q(f, f )  = 0, but it is not an ordinary local equilibrium solution as the momentum is 
not conserved. Moreover, the meaning cannot be the same as in the t-dependent 
case, where we looked for solutions tending to exp(-u2/2), and expression (7) cannot 
be thought of as a perturbation, as we can have stationary solutions far away from 
the equilibrium. 

(ii) A similarity transformation is used, contracting the two independent variables 
(x, U )  into a single new one z = b ( x ) u 2 .  When A(x)  in (7) is a constant, we have pure 
similarity solutions; in the general case, we shall speak of quasi-similarity. Because 
of (7) and the similarity condition, we choose 

(8) 

f(x, u )  = A (x) exp(-b (x )u x polynomial in Jbu 

f+(x, U )  = exp(-6 (x )U ')[P(X) + Q(x )U' + R (X )u4 + S ( X ) U ~  + . . . + V ( X ) U  '"'1. 
The requirement of polynomial solutions compatible with equation ( 5 )  leaves us 

with only three possibilities: p = 2, N = 1; p = 1, N = 2 and p = 0, N = 3. Further, the 
same requirement implies that, when either U + +CO or -03, necessarilyf- andf+f+ +f- 
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become negative; the reason is that both f- and f are U polynomials of higher degree 
than f+ with an odd dominant term. In fact it appears from our study that f+ itself 
can have negative parts. This suggests that the form (8) might actually describe only 
a germ of a solution which is in fact an infinite series and eventually displays the 
desired positivity property. 

From the equations above, we derive sum rules analogous to conservation of mass 
and energy in the time-dependent Boltzmann-like equations and which appear very 
powerful in the present study. By multiplying ( 5 )  I u / ~ - ~  for any n ( n  >2p -3 )  and 
integrating over v ,  we can write 

and the RHS disappears when both n = 4 = 0 or when either n = 0, 4 = 2 or n = 2, 
4 = 0. For p = 2 and 4 = 0 we thus get one sum rule (n = 2); for p = 1 and p = 0, we 
have three sum rules for 4 = 0 (n = 0 ,2 )  and 4 = 2 (n = 0). 

We come now to the result of our study. Things become more involved when p 
decreases from 2 to 0. One reason for this complexity is that the degree of the 
polynonial in f+ increases. Another reason is the appearance of the first moments 
uZn of the cross section cr(8) of equation (2) 

uZn = de u(8)(sin 8 COS lo2= 
In determining f+, the cross sections appear for p = 2 only through an inessential 
multiplicative factor u2, like in the BKW solution, whereas for p = 1 (resp p = 0) the 
ratio u2/u4 (resp f f 2 / ( T 6 ,  (T4/u6)  enters into the formalism; only discrete values of 
these ratios correspond to true solutions. Besides, positivity constraints for u(8) 
require u2/u4 > 1 (resp u 2 / u g  > ff4/(T6 > 1) .  

For p = 2, the whole calculation may be done analytically for any 4. For p = 1 and 
p = 0, we found solutions numerically, except when 4 = 0 or 2 where the sum rules 
provide analytical results. For p = 1,  in supplement to the sum rule cases 4 = 0 ,2 ,  we 
have performed a complete study for any 4 which interpolates the 4 = 0 and 2 results. 
On the contrary, for p = 0, we restricted to the analytical cases 4 = 0 , 2  which 
presumably are limiting values in a complete 4 study. We retain as available solutions 
those for which (i) f is a real function (not necessarily everywhere positive) with finite 
positive density N O ( x )  = j f ( x ,  v )  dv, (ii) a ( 0 )  is positive. 

Now, choosing for f+ the expression (8) and substituting into (6)-(7), we get Nq 
and a polynomial in u 2  (whose maximum degree is 4 , 8  or 12 for p = 2, 1 , O  respectively) 
with q-dependent coefficient which must be identically zero for the different powers 

The consistency of these equations together with the similarity conditions give 

Anticipating a main result, i.e. b ( x )  is a power law b ( x )  = bo(x with x > x o ,  

of v 2 *  

Q - Pb, R - Pb2,  S - Pb’, Nq - Pb-‘q+1) /2 .  

and setting x o  = 0 because of translational invariance, we have 
A l p + q + 2 ) / 2 - 1  A ( p + q + 4 ) / 2 - 1  0 = Q o x  R = R ~ x  p = poxA(’P+q)/2-1 

(9) s = s O x A ( p + q + 6 ) / 2 - 1  N ,  = Nsox h ( P + q - S - 1 ) / 2 - 1  

where PO, Qo, Ro, SO, N,, are constant. 
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These expressions are written generally; for p = 1, we must set S = 0 and for p = 2 ,  
0. They imply that equation (1) is invariant under the change x + a F x ,  U + a "U R = S 

provided A = - 2 u / p .  Functions f+ and f- are rewritten 

F + ( z )  ( l o a )  

f - ( x ,  U )  = -Ni l :  sg x A ( p + q ) / 2 - 1  (2 I ( I - P ) 1 2 F - ( Z )  (106) 

F+(O) = P o  F-(O)=[A(p +q)/2-11Po ( 1 O C )  

f ( ) - A ( p + q ) / 2 - 1  + x , u  - x  

A 2  z = x  U 

where F, are functions of z only (product of an exponential and a polynomial) and 
F-(O) is zero in the pure similarity case A = 2 / ( p  + q ) .  

This kind of x dependence introduces unpleasant features at small or large x .  We 
simply verify a posteriori that: (i) For A < 0 and A > max(2/(q + l), 2/(q + p ) )  the limit 
of f when x + O+ is zero whereas when x + 00, f+ 0 for any A. The behaviour of the 
density N , ( x )  depends on the effective values of p ,  q, A .  In general, N,, diverges like 
powers of x .  (ii) For 0 < A  < min(4/(q + l), 2 / ( q  + p ) ) ,  we have a breakdown both of f 
and the derivative a f / a x  at x = 0. (iii) For intermediate regions, different regimes occur. 

The results are somewhat different for the pure similarity case as F-(0) = 0. We 
find three such solutions ( p  = q = 2 ;  p = 1, q = 0.08 and q = 2.002) .  For all of them 
f is well defined for x = 0 and f + l x Z O  = constant, f - l x = o  = 0 (specular reflection). For 
one of them ( p  = 1, q = 0.08), a f / a x l x + o + + O ;  for the other ones, the derivative is 
infinite. 

Casep = 2  ( R  = S = O )  

Beside the non-negative powers of U', an extra term appears in this case only, 
corresponding to u - ~  (equation [-21 in table 1). Due to the first and last equations 
[-21, [4] in table 1,  two possibilities occur. In the first one PxfO,  (bx )2b1q-1 ) /2  = 
constant, P- b"'. In the second one PGconstant, we find (bX)'bq = const. In both 
cases, the x dependences are of the power type b ( x ) = b o ( x  - x J A ,  A = 2 / ( q + l ) ,  

respectively with x > x,, 
and the corresponding ones for P, Q. At this stage, only the parameter q and the 
constants in front of the power laws are to be determined. For this, we use the two 

l I / ( q + Z ) ) - l  and A = 2 / ( q  + 2), Nq - ( x  - x o )  l l / ( q + l ) ) - l  Nq - ( x  - x o )  

Table 1. Equations for f + ( x ,  U )  when p = 2 and solutions for q = 14 and q = 2 .  

Q x x )  + (Q, - 
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remaining equations ( 2 n  = 0 and 2) of table 1.  We are left with only three discrete 
4 values: 4 = 0, 2, 14. 

For 4 = 0, the sum rules read &(ln No) = 0. In the first case, No is a constant and 
the sum rule is automatically fulfilled but it turns out that the final distribution f+ is 
complex and we disregard this case. In the second case N and the sum 
rule cannot be satisfied (No(x)  f 0). Solutions for 4 = 14 and 4 = 2 are acceptable and 
the last one satisfies pure similarity. As discussed above, they have negative parts 
but in z regions where they are relatively small. 

Case p = 1 (S = 0)  

General equations for functions P, Q, R, b are given in table 2 (equation [O] to [8]). 
Equations for Nq and [8] together with the scaling condition give P=b,b(q-1)’2,  
Nq - b,/b. Assuming for b a power law b = box*, we deduce the scaling laws equation 
(9) and a system of equations for the constants bo, Po, Qo, Ro, Nqo in terms of 
parameters A, A2a2/cr4  and q. By solving the equations, we can eliminate Po, 
Qo, . . . and with the help of the computer we determine for every q a finite number 
of possible (A, (72/u4)  which lead to real distributions. The results for A are plotted 
in figure 1 for positive 4. Two pure similarity solutions exist, and the corresponding 
A is obtained as the intersection of A = A  (4 )  with the critical curve A = 2/(q + 1 )  (see 
full circles on figure 1);  we find q - 2.002 ((+2/(T4 - 5.8) and q - O . O ~ ( C Q / U ~  - 8). We 
recall that they satisfy the specular reflection condition f - ( x  = 0, U )  = 0. The sym- 
metrical case p = 4 = 1 provides two solutions A = 0.297, (+2/(+4 = 8.068 and A = 
-0.144, ( + 2 / ~ 4 = 4 . 1 0 .  Once the pairs (A,u2/a4) are obtained, we determine all 
remaining constants but bo and a(8) which remain almost arbitrary. The only con- 
straint is positivity and the knowledge of the ratio u2/u4. Functions f+  and f- are 
given by (10). The only remaining problem is the determination of classes of constants 
Ju2 consistent with the constraints on a ( 0 ) .  (Schwartz’s inequality a2/(+” < ( ~ 4 / ( ~ 2  
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gives a limitation.) As an illustration,we represent in figure 2 the symmetrical case 
q = 1 with possible A = -0.144 and 40, = 0.20 corresponding to the allowed a(6) = 
[ 1 + 0.41 (sin 8 cos 8)-".'] x 0.0446. 

We would like to emphasise the role of q = 0 and q = 2 which clearly appear in 
figure 1 as limiting cases (the cross in figure 1 marks the end points for q = 0 or q = 2). 

Figure 1. Plot of A against q for p = 1, q 2 0. 

Figure 2. Plot for p = 1 ,  q = 1 and A = -0.144 for the reduced functions F+(z ) / J& (full 
curve) and F-(z) (broken curve) against L. The total function x'-'ff(x, U )  is proportional 
to F+(z) +sg U F&) (dotted lines for U > 0 and U < 0 ;  u2 = 0.0387 u2/u4 = 4.100). 



Letter to the Editor L349 

They can be completely studied analytically, thanks to the simplification due to the 
sum rules that we discuss now. 

For q = 2, the previous condition N,(x)  f 0 eliminates the limit (q + 2) solutions 
A = - $j and A = - 1.  Now, the unique sum rule reads a, ( N i l  8 3 0 )  = 0 or (A - 1 ) 2 N ~ ~  = 
0. If Noo = 0, one of the equations is replaced by the sum rule Pobi+&ob~ t ~ R o  = 0 
which simplifies the formalism. We find A = 0.136, (T2/(T4 = 8.93 and A = -0.203, 
~ 2 / ~ 4  = 4.03 which fulfil all our criteria except positive density. If A = 1, the remaining 
unknown parameter U =u2/u4 is a solution of the fourth-order equation 360u4- 
2442u3+ 3553u2-6512u - 62 = 0. We find U - 5.59 > 1.  

For q = 0 the two sum rules are written $ 2  In NO = 0 and a,(No-'a,N~) = 0. We 
recall that No(x)  =Noox-' so that the first sum rule cannot be satisfied. As Nz(x)  = 
Nzox - (*+l '  , the secsnd sum rule is rewritten Nz0(A + 1)2/Noo = 0 leading either to 
A = -1, U =4&342 ,  or to N200tPob i+:Qobo+~Ro=O;  NzO=O corresponds to 

it is remarkable that they are the limit of the q + 0' solutions, and we emphasise that 
some of these q + 0 solutions are acceptable (see figure 1, full curves). 

Case p = 0 

We give here only the higher-order term, the coefficient of U l 2  

A = - z  5 ,  U = 1. Though these solutions must be rejected in our formalism (No(x)  E 0), 

- ( b x ) 2 b ( 4 + 1 ) / 2  - 
- u 6 r ( ( 4  + 1)/2)Nqs* 

With similarity constraints (9) we get P - b , b 4 / 2 - 1 ,  Nq -b,b-3/2.  The constants Po, 
Qo, Ro, So, N,,, bo are to be determined as functions of the parameters A ,  h 2 U 2 / U 6 ,  

A 2 u 4 / u 6  and q. The complete numerical analysis can be performed for any q value 
but for simplicity, we restrict to the analytical cases q = 0 and q = 2 where we take 
great advantage of the sum rules. For q = 0, the first sum rule gives ax(NG' axN2) = 0 
or (3A/2 + 1) (A + 1)Nz0 = 0, whereas the second one &(Nil axN4) = 0 leads to 
(SA + 1)(2A + 1)N40 = 0. We have two cases: 

(i) either NZo and N40# 0; we find A = -;, -3, -$, -3, but they do not satisfy 
the positivity of ~ ( 6 ) ;  

(ii) or either NzO=O, A = - $  and A = - y  or N4"=0, A = - 3  and A =-1; again 
this case does not lead to solutions with positive u ( 6 ) .  In conclusion, if they exist, 
closed solutions for the Kac model are not of this type. 

For q = 2, the unique sum rule is 8 2 2  In N2 = 0 or N2(x)  = constant and corresponds 
to macroscopic conservation of energy. As N2(x)  = N20x-(*/2+1)  and N2(x)  f 0, we 
must have A = -2. We find two acceptable (although not always positive) solutions 
corresponding to the parameter values 

1 2 

( T 2 / u 6  = 32.9 (T4/ (r6  = 5.07 (1 la)  

(T2/ (T6 = 29.27 u 4 / ( T 6  = 6.36 (1 16) 

with density N(,(x) = N , J K z ( N o o  > 0) and scaling variable z = b o u 2 / x 2 .  
As for p = 1, using (lo), we get 

F A Z )  = (2bo e - z / ( - ~ ~ 6 ) ' ' 2 ~ o r ( S ) ) ( ~ o ~ ~ +  Q ~ ~ : z  + ~ ~ b ~ t ~  + s O z 3 )  

F- ( z )  = ( - 6 o / 2 . / ~ ( ~ ) ) ( 3 + 2 2 a , ) F +  a n d K =  ( P o b : + t Q o b : + ~ R o b o + ~ S o ) / S o .  

For the remaining unknown U69 the Schwartz inequality gives U 6 / U o  s 
( u 4 / ( r 6 ) ( ( T 2 / ( r 6 ) - 2  and we explicitly build possible a(@). For instance, solution (1  l a )  
with u(e) = 0.31 1 x [ I  - 4  sin2 B cos2 e +3.81 (sin e cos B ) ~ . ~ ]  gives (T6 = 0.001 47. In 
figure 3, we have plotted the reduced function proportional to x ' f ( x ,  U), corresponding 
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to this case. We recall that, like for p = 2 and p = 1, only 6” is undetermined and 
yields a multiplicative overall constant coming from the invariance of the equations 
to the transformations (x, f )  + @x, p f ) .  

Figure 3. Plot of x 3 f ( x ,  U )  for U > O  (full curve) and v < O  (broken curve) in terms of 
z = bOv2/x2  for p = 0, q = 2 and A = -2 (solution l l a ) .  52 = 32.90, O4 = 5.067, u6= 
0.001 49. 

One of the authors (VP) acknowledges Professor T Keyes for his interest in this work. 

Note added in proof. We stress that the solutions we get in this letter are obtained from the sourceless 
equation only and without any additional conditions at the ‘critical’ points x = 0, Q). Moreover, we always 
restricted to the halfspace x > O .  If a similar study was carried out for x CO, it would only remain to 
investigate the physical meaning of a gas on the whole x axis with a ‘barrier’ at x = 0. 
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